jueves, 25 de junio de 2009

Inhibidores de la corrosión

Los inhibidores de corrosión, son productos que actúan ya sea formando películas sobre la superficie metálica, tales como los molibdatos, fosfatos o etanolaminas, o bien entregando sus electrones al medio. Por lo general los inhibidores de este tipo son azoles modificados que actúan sinérgicamente con otros inhibidores tales como nitritos, fosfatos y silicatos. La química de los inhibidores no está del todo desarrollada aun. Su uso es en el campo de los sistemas de enfriamiento o disipadores de calor tales como los radiadores, torres de enfriamiento, calderas y "chillers". El uso de las etanolaminas es típico en los algunos combustibles para proteger los sistemas de contención (como tuberías y tanques).

Aislamiento del medio

Existen distintos medios para impedir que ocurra la reacción química. Como primera medida de protección se puede aislar la pieza del ambiente, dándole una mano de pintura, cubriendo la pieza de plástico, haciendo un tratamiento de superficie (por ejemplo, nitruración, cromatación o proyección plasma).

Galvanismo anódico o protección catódica

También se puede introducir otra pieza para perturbar la reacción; es el principio del "ánodo de sacrificio" o "protección galvánica" (
protección catódica). Se coloca una pieza de aleaciones de zinc, aleaciones de magnesio y aleaciones de aluminio, que se van a corroer en lugar de la pieza que se quiere proteger; la reacción química entre el ambiente y la pieza sacrificada impide la reacción entre el ambiente y la pieza útil. En medio acuoso, basta con atornillar el ánodo de sacrificio a la pieza que se debe proteger. Al aire, hay que recubrir totalmente la pieza; es el principio de la galvanización. Este método se usa ampliamente en la ingeniería naval. También se usa en la protección de tuberías enterradas.

Galvanoplastia

La pieza se puede recubrir con una película de otro metal electrodepositado cuyo potencial de reducción es más estable que el alma de la pieza.
Galvanoplastia existe como el niquelado, el cincado (galvanizado), el cobreado y el cromatado (cromo duro o cromo decorativo) estañado, etc.
El cromado usado comúnmente en la industria automotriz y en la de los fittings confiere una protección estable al alma de hierro con la cual se confecciona el artículo. El cromado (no confundir el cromado, un depósito de
cromo, con la cromatación, que es la formación de una capa de metal combinado con iones de cromo VI). En efecto, el cromo mismo no se corroe, protegiendo así la pieza, pero la mínima rayadura es catastrófica, pues la pieza hace entonces las veces de ánodo de sacrificio del cromo y se corroe a gran velocidad.
Las pinturas anticorrosión con
plomo han sido abandonadas a causa de su impacto dramático en el medio ambiente y en la salud.

Aplicación de inhibidores asociados a una película de fijación
En este caso, caen las pinturas anticorrosivas cuyas formulaciones aparte de aportar con una película de aislamiento de tipo epóxico fenólico o epoxi-ureico llevan asociados un paquete anticorrosivo compuesto por moléculas orgánicas o minerales aceptoras de electrones tales como los azoles.
Es también conveniente mencionar que un inhibidor de corrosión deberá especificarse sobre que tipo de corrosión va a inhibir dado la gran diversidad de tipos y formas de corrosión dependiendo principalmente de las condiciones del medio donde se está llevando a cabo esta.

Exposición a soluciones reductoras

La superficie es expuesta a elementos químicos disueltos en una solución a bajas concentraciones, dichas especies son pares reductores que se oxidan ellos mismos a cambio de la pieza y además contribuyen con la pasivación o inactivación de la superficie formando micropelículas químicas estables. Estas especies se encuentran comúnmente en anticongelantes, pinturas base acuosa y otras aplicaciones. La corrosión también puede darse debido al contacto con el oxigeno

Tipos de corrosión

Existen muchos mecanismos por los cuales se verifica la corrosión, que tal como se ha explicado anteriormente es fundamentalmente un proceso electroquímico.

Corrosión electroquímica o polarizada

La corrosión electroquímica se establece cuando en una misma superficie metálica ocurre una diferencia de potencial en zonas muy próximas entre sí en donde se establece una migración electrónica desde aquella en que se verifica el potencial de oxidación más elevado, llamado área anódica hacia aquella donde se verifica el potencial de oxidación (este término ha quedado obsoleto, actualmente se estipula como potencial de reducción) más bajo, llamado área catódica.

Corrosión por oxígeno
Este tipo de corrosión ocurre generalmente en superficies expuestas al oxígeno diatómico disuelto en agua o al aire, se ve favorecido por altas temperaturas y presión elevada ( ejemplo: calderas de vapor). La corrosión en las máquinas térmicas (calderas de vapor) representa una constante pérdida de rendimiento y vida útil de la instalación.

Corrosión microbiológica
Es uno de los tipos de corrosión electroquímica. Algunos microorganismos son capaces de causar corrosión en las superficies metálicas sumergidas. Se han identificado algunas especies hidrógeno dependientes que usan el hidrógeno disuelto del agua en sus procesos metabólicos provocando una diferencia de potencial del medio circundante. Su acción está asociada al pitting (picado) del oxígeno o la presencia de ácido sulfhídrico en el medio. En este caso se clasifican las
ferrobacterias.

Corrosión por presiones parciales de oxígeno

El oxígeno presente en una tubería por ejemplo, está expuesto a diferentes presiones parciales del mismo. Es decir una superficie es más aireada que otra próxima a ella y se forma una pila. El área sujeta a menor aireación (menor presión parcial) actúa como ánodo y la que tiene mayor presencia de oxígeno (mayor presión) actúa como un cátodo y se establece la migración de electrones, formándose óxido en una y reduciéndose en la otra parte de la pila. Este tipo de corrosión es común en superficies muy irregulares donde se producen obturaciones de oxígeno.

Corrosión galvánica

Es la más común de todas y se establece cuando dos metales distintos entre sí actúan como ánodo uno de ellos y el otro como cátodo. Aquel que tenga el
potencial de reducción más negativo procederá como una oxidación y viceversa aquel metal o especie química que exhiba un potencial de reducción más positivo procederá como una reducción. Este par de metales constituye la llamada pila galvánica. En donde la especie que se oxida (ánodo) cede sus electrones y la especie que se reduce (cátodo) acepta los electrones.
Corrosión por actividad salina diferenciada

Este tipo de corrosión se verifica principalmente en calderas de vapor, en donde la superficie metálica expuesta a diferentes concentraciones salinas forman a ratos una pila galvánica en donde la superficie expuesta a la menor concentración salina se comporta como un ánodo.

domingo, 14 de junio de 2009

Corrosión

La corrosión se define como el deterioro de un material a consecuencia de un ataque electroquímico por su entorno. De manera más general, puede entenderse como la tendencia general que tienen los materiales a buscar su forma más estable o de menor energía interna. Siempre que la corrosión esté originada por una reacción electroquímica (oxidación), la velocidad a la que tiene lugar dependerá en alguna medida de la temperatura, de la salinidad del fluido en contacto con el metal y de las propiedades de los metales en cuestión. Otros materiales no metálicos también sufren corrosión mediante otros mecanismos.

La corrosión puede ser mediante una reacción química (oxidorreducción) en la que intervienen tres factores:

la pieza manufacturada
el ambiente
el agua
O por medio de una reacción
electroquímica.

Los factores más conocidos son las alteraciones químicas de los metales a causa del aire, como la herrumbre del hierro y el acero o la formación de pátina verde en el cobre y sus aleaciones (bronce, latón).

Sin embargo, la corrosión es un fenómeno mucho más amplio que afecta a todos los materiales (metales, cerámicas, polímeros, etc.) y todos los ambientes (medios acuosos, atmósfera, alta temperatura, etc.).
Es un problema industrial importante, pues puede causar accidentes (ruptura de una pieza) y, además, representa un costo importante, ya que se calcula que cada pocos segundos se disuelve 5 toneladas de acero en el mundo, procedentes de unos cuantos nanómetros, invisibles en cada pieza pero que, multiplicados por la cantidad de acero que existe en el mundo, constituyen una cantidad importante.




¿Cómo prevenir la corrosión?

Elección del material


La primera idea es escoger todo un material que no se corroa en el ambiente considerado. Se pueden utilizar aceros inoxidables, aluminios, cerámicas, polímeros (plásticos), FRP, etc. La elección también debe tomar en cuenta las restricciones de la aplicación (masa de la pieza, resistencia a la deformación, al calor, capacidad de conducir la electricidad, etc.).
Cabe recordar que no existen materiales absolutamente inoxidables; hasta el aluminio se puede corroer.

Concepción de la pieza

En la concepción, hay que evitar las zonas de confinamiento, los contactos entre materiales diferentes y las heterogeneidades en general.
Hay que prever también la importancia de la corrosión y el tiempo en el que habrá que cambiar la pieza (mantenimiento preventivo).


Dominio del ambiente

Cuando se trabaja en ambiente cerrado (por ejemplo, un circuito cerrado de agua), se pueden dominar los parámetros que influyen en la corrosión; composición química (particularmente la acidez), temperatura, presión... Se puede agregar productos llamados "inhibidores de corrosión". Un inhibidor de corrosión es una sustancia que, añadida a un determinado medio, reduce de manera significativa la velocidad de corrosión. Las sustancias utilizadas dependen tanto del metal a proteger como del medio, y un inhibidor que funciona bien en un determinado sistema puede incluso acelerar la corrosión en otro sistema.Sin embargo, este tipo de solución es inaplicable cuando se trabaja en medio abierto (atmósfera, mar, cuenca en contacto con el medio natural, circuito abierto, etc.).

viernes, 12 de junio de 2009

Oxidación

La oxidación en palabras simples es una reacción química donde un metal o un no metal ceden electrones, y por tanto aumenta su estado de oxidación. La reacción química opuesta a la oxidación se conoce como reducción, es decir cuando una especie química acepta electrones. Estas dos reacciones siempre se dan juntas, es decir, cuando una sustancia se oxida, siempre es por la acción de otra que se reduce. Una cede electrones y la otra los acepta. Por esta razón, se prefiere el término general de reacciones redox. Redox en términos generales es una abreviación de "reducción/oxidación", y se refiera a todas aquellas reacciones químicas en donde átomos cambian su estado de oxidación.


Siempre que ocurre una oxidación hay liberación de energía. Esta energía puede ser liberada de manera lenta, como es el caso de la oxidación o corrosión de los metales, o bien, puede ser liberada de forma muy rápida y explosiva como es el caso de la combustión.
La oxidación está presente en todos lados y la mayoría es a raíz del medio agresivo en que se encuentran, por ejemplo, ambientes de mar.

Sustancia más oxidante

La sustancia más oxidante que existe es el catión KrF+, y se debe básicamente porque fácilmente forma y se liberan electrones de manera Kr y F+. Entre varias sustancias con el mismo estado de oxidación; la capacidad oxidante difiere grandemente según el elemento acompañante, es por esto que el -CF3 tiene una electronegatividad (el C) similar a la del cloro (3,1) mucho mayor que por ejemplo -CBr3, aunque ambos tengan el mismo número de oxidación. Las propiedades del HBrO3 son muy diferentes a la del BrF5 éste último es mucho más oxidante aunque ambos tengan la misma valencia.
Si el elemento está como grupo neutro o estado catiónico: KrF2 tiene una EN menor que el KrF+ aunque formalmente tengan el mismo número de oxidación. Así el MnF3 el MnF4(-1) y el MnF2(+1) todos con el mismo número de oxidación tienen EN diferentes.
Las sustancias oxidantes más usuales son el permanganato potásico (KMnO4), el dicromato de potasio (K2Cr2O7), el agua oxigenada (H2O2), el ácido nítrico (HNO3), los hipohalitos y los halatos (por ejemplo el hipoclorito sódico (NaClO) muy oxidante en medio alcalino y el bromato potásico (KBrO3)). El ozono (O3) es un oxidante muy enérgico:
Br(-1) + O3 = BrO3(-1)
El nombre de "oxidación" proviene de que en la mayoría de estas reacciones, la transferencia de electrones se da mediante la adquisición de átomos de oxígeno (cesión de electrones) o viceversa. Sin embargo, la oxidación y la reducción puede darse sin que haya intercambio de oxígeno de por medio, por ejemplo, la oxidación de yoduro de sodio a yodo mediante la reducción de cloro a cloruro de sodio:


2NaI + Cl2 → I2 + 2NaCl

Esta puede desglosarse en sus dos hemireacciones correspondientes:


2 I-1 ←→ I2 + 2 e-
Cl2 + 2 e- ←→ 2 Cl-1

En estas dos ecuaciones queda explícita la transferencia de electrones. Si se suman las dos ecuaciones anteriores, se obtiene la primera.

Tipos de Oxidación

1.Oxidación lenta: Ocurre casi siempre en los metales a causa del agua o aire, causando su corrosión y pérdida de brillo y otras propiedades características de los metales, desprendiendo cantidades de calor inapreciables; al fundir un metal se acelera la oxidación, pero el calor proviene principalmente de la fuente que derritió el metal y no del proceso químico (una excepción sería el aluminio en la soldadura autógena).

La oxidación puede ser lenta (un metal que se oxida)

2.Oxidación rápida: La que ocurre durante lo que ya sería la combustión, desprendiendo cantidades apreciables de calor, en forma de fuego, y ocurre principalmente en substancias que contienen carbono e hidrógeno.

Oxidación muy rápida y violenta (el fuego)

Consecuencias


En los metales una consecuencia muy importante de la oxidación es la corrosión, fenómeno de impacto económico muy negativo.
Combinando las reacciones de oxidación-reducción (redox) en una celda galvánica se consiguen las pilas electroquímicas. Estas reacciones pueden aprovecharse para evitar fenómenos de corrosión no deseados mediante la técnica del ánodo de sacrificio y para la obtención de corriente eléctrica continua.